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Abstract

Knowing the physical location of users is a prerequisite for
location-aware computing. Much work has gone into the
user location problem in the context of wireless networks
and mobile hosts. In this paper, we argue that location-
aware computing is also relevant for stationary, wireline
Internet hosts. We present and evaluate three distinct
techniques | GeoTrack, GeoPing, and GeoCluster for de-
termining the geographic location of Internet hosts.

GeoTrack infers location based on the DNS names of
the host of interest or other nearby network nodes. GeoP-
ing uses network delay measurements from geographically
distributed locations to triangulate the coordinates of the
host. GeoCluster couples partial host-to-location map-
ping information obtained (indirectly) from Web sites
with BGP routing information to infer location of the host
of interest. Using extensive and varied data sets, we eval-
uate the performance of these techniques. We also discuss
the strengths and weaknesses of each technique.

1 Introduction

Location-aware computing [8, 7] is a powerful paradigm
that captures the essence user-centric computing. If com-
puting is to enable users to interact e�ectively with their
environment, then computing should be a function of the
user's location among other factors. This is the philoso-
phy underlying location-aware computing. Both the be-
havior and the user-interface of applications are moulded
by the user's location. A simple example is a printing ser-
vice where the user's print jobs are routed based on which
printer is located nearest the user's current location. An-
other is a restaurant location service that preferentially
picks restaurants that are close to the user's location.

Knowing the physical location of the user is a prereq-
uisite for location-aware computing. The granularity of
location information needed may vary depending on the
application. Much work has gone into the user location
problem in the context of wireless networks and mobile
hosts. Examples of such scenarios include a laptop user
walking about in a building and a cell phone user driving
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around a city. A variety of approaches have been used for
determining user/host location in a wireless setting: infer-
ence based on wireless signal timing [8] and strength [1],
this mobile host's point of attachement in a cellular net-
work, and of course the Global Positioning System (GPS)
[4].

In this paper, we argue that location-aware computing
is also relevant for the more traditional Internet hosts,
such as users' desktop machines, that are mostly station-
ary and are typically connected via a �xed wireline net-
work. Consider a user browsing information on a news
Web site. There are many ways in which the informa-
tion purveyed to the user can be moulded based on his
or her physical location. The user could be sent informa-
tion on local events, weather, etc. Advertisements can be
targetted based on location. Access to content can be con-
trolled based on location (territorial rights management)
in a manner akin to TV broadcast rights that are often
restricted to speci�c geographic areas.

It is possible for a Web site to determine a user's lo-
cation by requiring the user to register with the site and
then \log in" each time he or she visits the site. While
such a mechanism may be appropriate for services with
high security requirements (such as banking and email), it
is probably too heavyweight for the vast majority of Web
sites (such as news sites) that users browse casually. An
alternative to requiring users to log in is to store location
information (among other things) in a client-based cookie
at the time of registration and then include the cookie in
future requests. Such an approach does not require the
user to log in on each visit, but it still imposes the burden
of registration. Moreover, the cookie information may be
unavailable when the user connects from a host other than
the one he or she registered from. Finally, the location in-
formation manually input by an individual user may be
inaccurate or errorneous, so depending on is undesirable.

Our model is one where Internet servers try to deduce
the location of clients without depending on explicit in-
formation from the human user or the client's ISP. So the
goal is to determine the geographic location of the user
knowing only the IP address of the client he or she is
connecting from. This is a challenging problem because
the IP address does not inherently include any indication
of geographic location. We have developed several novel
techniques that approach this problem from di�erent an-
gles. These techniques exploit di�erent properties of the
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Internet such as hierarchical addressing and correlation
between delay and distance. We analyze a variety of data
sets both to re�ne these techniques and evaluate their
performance. To the best of our knowledge, ours is the
�rst research e�ort in the open literature that studies this
problem in detail.

The �rst technique, GeoTrack, tries to infer location
based on the DNS names of the host of interest or other
nearby network nodes. The DNS name of an Inter-
net host sometimes contains clues about the host's lo-
cation. Such a clue, when present, could indicate loca-
tion at di�erent levels of granularity such as city (e.g.,
corerouter1.SanFrancisco.cw.net indicates the city of San
Francisco, USA), state/region (e.g., www.state.ca.us in-
dicates the state of California, USA), or country (e.g.,
www.un.cm indicates the country of Cameroon). Even
when present, the clue could be misleading (e.g., the host
with the DNS name www.newyork.com is actually located
in the city of New Orleans). So such clues need to be used
with care.

The second technique, GeoPing, uses network delay
measurements made from geographically distributed lo-
cations to triangulate the coordinates of the host. It is
based on the premise that the delay experienced by pack-
ets travelling between a pair of hosts in the network is,
to �rst order, a function of the geographic separation be-
tween the hosts (akin to the relationship between signal
strength and distance exploited by certain user position-
ing systems in wireless networks). This is, of course, only
an approximation. So our delay-based technique relies
heavily on empirical measurements of network delay.

The third technique, GeoCluster, couples partial host-
to-location mapping information obtained (indirectly)
from Web sites with BGP routing information to infer
the location of the host of interest. For our research,
we obtained the host-to-location mapping information
from a variety of sources, including a popular Web-based
email site, a business Web hosting site, and a TV listing
site. (User identity information was protected through
anonymization.) The data thus obtained is partial in the
sense that it only includes a relatively small number of IP
addresses. We use BGP routing information to expand
the coverage of this data by identifying clusters of IP ad-
dresses that are likely to be located in the same geographic
area.

None of these techniques is perfect. Each has its
strengths and weaknesses. Nevertheless the performance
of our techniques is encouraging. The median error in
our estimate of location varies from 28 km to several hun-
dred kilometers depending on the technique used and the
nature of the hosts being located (whether they are in a
well-de�ned geographic clusters such as university cam-
puses or whether they are dispersed such as AOL clients).
The accuracy needed is a function of the application. We
discuss how some of our techniques are self-calibrating in

that they can o�er an indication of how accurate a speci�c
location estimate is likely to be.

The rest of this paper is organized as follows. In Sec-
tion 2 we survey related work. In Section 3 we describe
our experimental setup and methodology. We present the
details of the three techniques we have developed and an
analysis of their performance in Sections 4, 5, and 6. Fi-
nally, we present our conclusions in Section 7 and outline
ongoing and future work in Section 8.
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Figure 1: Outline map of the U.S. showing locations of
our probe machines.

2 Related Work

There has been an increasing interest in location-aware
computing and services in wireless environments (e.g.,
[7],[2]). As a result there has been been much work on
the problem of locating hosts in such environments. The
most well-known among these is the Global Positioning
System (GPS) [4]. However, GPS is ine�ective indoors.
There have been several systems targeted speci�cally at
indoor environments, including Active Badge [7], Active
Bat [8], and RADAR [1]. As we discuss later, our GeoP-
ing technique uses a variant of RADAR's NNSS algorithm.
However, in general these techniques are speci�c to wire-
less networks and do not readily extend to the Internet.

There are many commercially and publicly available
products that attempt to solve the host location problem
in the Internet. These include VisualRoute [36], Wha-
tRoute [37], GeoBoy [22], Neotrace [30], Traceware [33],
NetGeo [12], IP2LL [34], GeoPoint [23] and Gtrace [13].
A list of existing approaches and their shortcomings is
discussed in section 2.1.

Some of these tools are used by companies and other
agencies for enabling di�erent services on the Internet.
Neotrace and VisualRoute have been used successfully to
pinpoint causes of network problems, identify the intruder
in the network, explore Internet geography and hunt down
spammers. The FBI, NATO, US Customs and many ISPs
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are customers of these tools [30]. Digital Island announced
a release of its tool called Traceware [33] to enable creation
and deployment of applications that either require a geo-
graphic location service of clients or deliver geographically
relevant customer experience [33]. Akamai's EdgeScape
[16] o�ers the service of determining the location of net-
works and their corresponding type. Akamai [16] also has
the capability of supporting customized content based on
the geographic region of a host. Since many these com-
mercial services use proprietary algorithms, it is hard to
compare them with our research e�ort.

2.1 Existing Approaches and their Prob-
lems

There are multiple ways of building a IP address to ge-
ographic location mapping service. Many existing ap-
proaches and proposals for solving the problem can be
broadly classi�ed into the following categories:

1. Incorporating the latitude and longitude information
in the DNS.

2. Using the whois [6] database to determine the loca-
tion of the organization to which an IP address was
allocated.

3. Performing traceroute to an IP address and mapping
the router label to the geographic location using air-
port codes [15], city codes and country codes [20].

Uri Raz [31] presents a list of possible ways of solving
the IP-geography problem. The �rst approach mentioned
above was proposed in RFC 1876 [14]. This work de�nes
the format of a new Resource Record(RR) for the Do-
main Name System(DNS) and reserves a corresponding
DNS type mnemonic (LOC) and numerical code (29).The
problems with the DNS based approach include:

1. A modi�cation of the record structure of DNS
records.

2. Requiring di�erent administrations to enter the LOC
records into the DNS record database.

3. No easy way of verifying whether the location entered
by a user or administrator is correct and trustworthy.

A popular approach that has been adopted widely in
many tools is querying whois servers. Tools such as IP2LL
[34], and Allwhois [17] and NetGeo [12] use the whois
database to determine the geographic location of a host.
A list of publicly available whois servers is available at
[26].

There are several problems with whois based ap-
proaches (many of these are listed in [12]). The main
problems are:

1. The whois database is highly unreliable. The do-
main name maintainers do not insist on keeping the
database accurate and current. Records correspond-
ing to an IP address block may be present in multiple
registries, but these records may not be consistent.

2. A large block of IP addresses may be allocated to
a single entity. For any IP address in that block,
the whois server will return only the headquarters or
the address registered by the organization. For ex-
ample, the 8.0.0.0/8 IP address block is allocated to
BBN Planet and a query to the ARIN whois database
will only return \Cambridge, MA" for any IP address
within this range.

3. Due to web-hosting and domain name transfers, the
location registered in the whois database may be very
di�erent from the actual location of host server. For
example, a whois query on www.desktop.com would
return the location as Colorado though the servers
are based in San Francisco.

Several commercial products use traceroute[9] as the ba-
sic tool for tracing the geographic path to a given IP ad-
dress. These solutions include VisualRoute [36], Neotrace
[30], GeoBoy [22], WhatRoute [37] and Gtrace [13]. Our
GeoTrack tool is motivated by many of these tools and
attempts to remove some of their shortcomings. GTrace
uses traceroute and ping measurements while Neotrace,
VisualRoute and WhatRoute use traceroute, ping and
whois queries for determining location. GeoBoy keeps
track of the geographic location from a series of cache
�les which can be updated and customized by the user
[22]. The details of how GeoBoy works is proprietary.

The basic idea in any traceroute-based tool is to per-
form a traceroute from a source to a given IP address and
look at the router labels (i.e., the DNS names associated
with a router's network interfaces) along the path. The
router labels may have the geographic location informa-
tion hidden in terms of city codes, airport codes and coun-
try codes. Although traceroute-based tools avoid many of
the shortcomings of the whois-based approaches, they still
face quite a few problems. These include:

1. Many Web clients are behind proxies which drop
traceroute packets. So geographic locations are nor-
mally traceable only to the proxy's location.

2. Each ISP has its own naming scheme for cities and it
is diÆcult to capture the di�erent naming schemes.
For example, every ISP has its own naming scheme
for San Francisco. Some of the commonly used names
include sfo, s�ca, sanfrancisco, sanfranciscosfd, snfr,
snfrca.

3. There are a lot of cities that have the same name
or same city code. Most of these codes do not give
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out any information regarding the state or the coun-
try. In such cases, it will be diÆcult to determine
which city is being referred to in a router label. For
example, many ISPs use the word \Bloomington" in
their router labels to refer to the location Blooming-
ton. Given that there are 21 di�erent locations called
Bloomington in the US, it is hard to determine the
actual Bloomington where a particular router may be
present.

3 Experimental Methodology

As outlined in Section 1, our techniques for determining
location are varied in the information they draw upon
and their mode of operation. In this section, we discuss
the experimental setting and data sets we used to develop
these techniques and analyze their performance.

3.1 Geographic Setting

All of our experiments are set in the United States (U.S.).
The main reason for this restriction is that, as of the time
of this writing, the bulk of the data sets and probe ma-
chines we have access to pertain to or are located in the
U.S. While there may be limitations to studying a single
country, the U.S. still o�ers a large and varied testbed for
our research. The U.S. consists of 50 states, 48 of which
are located in the large geographic area depicted in Fig-
ure 1, and two others that are located 2000 km to the
northwest and 4000 km to the southwest, respectively, of
this landmass. (In addition, our data sets recorded the
U.S. capital, Washington DC, as a separate entity, so we
e�ectively had 51 \states".) Thus, the U.S. is as large as
certain continents in terms of geographic expanse. It is
also home to a sizeable fraction of the Internet, in terms
of networks, routers, end hosts, and users. So we believe
the research reported in this paper is interesting despite
being limited to the U.S. In Section 8, we discuss ongoing
work that extends beyond the U.S.

3.2 GeoPing and GeoTrack

GeoPing requires network delay measurements to be made
to the host of interest from several known locations. For
this purpose, we obtained access to probe machines at the
14 locations depicted in Figure 1. These machines were
typically well-connected hosts on university campuses and
were geographically distributed across the U.S. In some in-
stances, we deliberately picked probe points closely clus-
tered together (e.g., Berkeley and Stanford) with a view
to comparing the corresponding delay data to validate (or
invalidate!) the basic premise of GeoPing that geographic
distance is a signi�cant determinant of delay.

As we explain later in Section 5.1.1, GeoPing is primed

using a database of delay measurements from the probe
machines to several \target" machines at known locations.
To obtain such a database, we constructed a list of 265
Web servers (termed UnivHosts) spread across university
campuses in 44 states of the U.S. using information from
[24, 25]. The selection of university servers as target hosts
o�ered the advantage that we were very certain of their
location.

The UnivHosts data set is also used to evaluate the
performance of GeoTrack and GeoCluster.

3.3 GeoCluster

GeoCluster draws upon a variety of datasets. BGP rout-
ing information is derived from dumps taken at two
routers at BBNPlanet [18] and MERIT [28]. We were
only interested in the address pre�x (AP) information, so
we constructed a superset containing address pre�x in-
formation derived from both sources. In all there were
100,666 APs in our list.

We obtained IP-to-location mapping information from
three sources (for the sake of anonymity, we do not reveal
their actual names here). Note that the data sets we ob-
tained were partial in the sense that they only covered a
small fraction of IP address space in use.

1. FooMail: a popular Web-based email service with
several million active users. Of the over 1 million
(anonymous) users we obtained information for, we
focussed on the 417721 users who had registered their
location as being in the U.S. The location informa-
tion we obtained from the users' registration records
was at the granularity of U.S. states. In addition, we
obtained a log of the client IP addresses correspond-
ing to the 10 most recent user logins (primarily in the
�rst half of 2000). We combined the login and regis-
tration information to obtain a partial IP-to-location
mapping.

2. FooHost: a business Web hosting site. Location infor-
mation (at the granularity of zip codes) was recorded
at the time of user registration. This information was
included in a cookie when a client sent a request to
the server. In all we obtained location information
corresponding to 181246 unique IP addresses seen
during (part of) a day in October 2000.

3. FooTV: an online TV program guide where people
check on program listings for a speci�c zip code.
From traces gathered over a two-day period in Febru-
ary 2000, we obtained a list of 142807 unique client IP
addresses and 336181 pairs of (IP; zip) correspond-
ing to the client IP address and the zip code that the
user speci�ed in his/her query. A subset of the IP
addresses had more than one corresponding zip code
(usually clustered together geographically).

5



In the case of FooHost and FooTV, we mapped the
zip code information to the corresponding (approximate)
latitude and longitude using information from the U.S.
Census Bureau [35]. Location information in FooMail is
at the granularity of states. We computed the zipcenter
of each state by averaging the coordinates of the zip codes
contained within that state.

We do not expect the partial IP-to-location mapping
obtained from these sources to be entirely accurate. For
instance, in the case of FooMail and FooHost users may
connect from locations other then the one they registered.
In the case of FooTV, users may enquire about TV pro-
grams in areas far removed from their current location,
but we believe this is unlikely. Regardless, in Section 6
we explain how the GeoCluster technique addresses this
issue.

4 GeoTrack: A Traceroute Based

Tool

This section gives a description of the GeoTrack tool that
we have developed for tracing the geographic location of
an IP address. The related work section describes several
IP-to-geography mapping tools in use and discusses their
shortcomings. The design and implementation of our tool
has been motivated by many of these publicly available
tools such as VisualRoute, Gtrace, and Neotrace [13, 30].
We now describe how GeoTrack works and how it is dif-
ferent from the existing tools.

4.1 GeoTrack

GeoTrack is a tool for tracing the geographic location of
an IP address. It uses traceroute and ping measurements
from a given source to the speci�ed IP address. The router
labels are converted into the geographic location using city
codes, airport codes and country codes. Our tool can give
a reasonable estimate of the location in the U.S., Canada,
and 26 di�erent countries in Europe. The tool can also
decipher the router's location to a country's granularity
based on the country codes for other countries.

The characteristic features of GeoTrack that is di�erent
from many of the existing traceroute based tools are the
following:

� No Whois: Given the limitations of whois listed
in Section 2.1, we decided not to use whois-based
lookups in our tool.

� Airport Codes: The total number of airport codes is
very large. In the U.S. alone, the number of airport
codes is 2722. Often an airport code might inadver-
tently appear in a router label. For example, MIT
refers to an airport in Shafter, CA, but also appears

in all router labels in the mit.edu domain located
in Cambridge, MA. In our GeoTrack tool we have
pruned the airport code database to a much smaller
data set. We determined from our traceroute logs
that many ISPs outside the US do not use airport
codes for naming routers. Therefore we restricted
our list of airport codes to just the US.

� Country and Continent Speci�c Networks: Country
codes may not always be present in router labels. In
order to �nd the location of a router to a country or
a continent's granularity, we generated a list of net-
works which are restricted to speci�c countries and
continents. We have generated over 200 country and
region speci�c networks in the U.S., Canada and Eu-
rope. These do not include any host networks.

� City Code Database: As in VisualRoute and Neo-
trace, we generated a list of city codes for a number
of cities in the U.S., Canada, and 26 countries in Eu-
rope. To infer the di�erent codes associated with a
city, we perform traceroutes to several web sites in
the city from multiple traceroute servers [32].

� Partitioning of City Codes: To minimize the chances
of an inadvertent match between city codes and com-
mon substrings present in router labels, we partition
the city codes based on the country and the conti-
nent. We use the information about the network to
decide which partition of codes should be used to in-
fer the location of a router.

� Delay Based Correction: As in the tool Gtrace [13],
we use a delay based correction mechanisms to re-
move incorrect guesses of geographic location. If the
di�erence in minimum delays to two adjacent routers
is very small(less than 5 ms) then they are presumed
to be very close to each other geographically.

GeoTrack determines the location of the routers based
on router labels and returns the location of the router clos-
est to the destination which is recognizable as the location
of the end-host.

4.2 Performance Characteristics

This section details the results of the performance of our
GeoTrack tool. We consider two test samples of IP ad-
dresses to determine the location using our tool. We per-
form our experiment from 14 di�erent source points as
explained in the previous section. The location of these
14 sources is shown in Figure 1.

4.2.1 Results

We performed two di�erent experiments to test our Geo-
Track tool. In the �rst experiment, we ran the GeoTrack
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tool from the 14 probe locations (Figure 1) using Uni-
vHosts as the target dataset. For every data point, we
de�ne the error distance to be the geographic distance
between the actual location of the data point and the
location as determined by the GeoTrack tool. The dis-
tance between two geographic locations is computed as
the shortest path between the two locations (great circle
route). We compute the cumulative probability distri-
bution function of the error distance for each of the 14
sources. The results are shown in Figure 2.
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Figure 2: Cumulative Distribution of Error Distance for
4 di�erent probe locations

Figure 2 displays the cumulative distributions of four of
the probe locations located at JHU, Stanford, Rutgers and
Dallas. The performance of Stanford is much better than
the other three probe points. Among the 14 probe points,
JHU reported the worst error distance characteristics. For
many of the universities, JHU recognized the location only
to the granularity of the closest well connected city in
some backbone thereby increasing the error distance.

In our second experiment, we compute the error char-
acteristics for a Client IP address dataset that we con-
struct from the FooTV website. The Client IP dataset
consists of a random sample of 2380 IP addresses of clients
who accessed FooTV. We use GeoTrack to determine the
location of the clients from 3 di�erent sources. The 3
di�erent sources in this experiment are located at Stan-
ford,CA(West Coast), St.Louis,MO(Center) and Chapel
Hill,NC(East Coast). In this experiment, we de�ne the
error distance of an IP address to be the distance be-
tween the location determined by the tool and the zip
code location entered by the user. An important point
to note in this experiment is that an IP address may be
associated with multiple locations, suggesting that the IP
address is allocated dynamically (say using DHCP [3] for
dialup clients) or it is assigned to a proxy host (such as a
Web proxy or a �rewall). So multiple clients in di�erent
location may use the same IP address at di�erent times.
We compute the performance of the Client IP dataset to
the UnivHosts dataset for the 3 di�erent probe locations.
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Figure 3: Comparison of the CDF of error distance for
the UnivHosts dataset and the Client IP dataset for UNC

Figure 3 clearly indicates that the performance of the
Univ dataset is much better than the Client IP dataset.
Many of the clients are behind proxies, so the \client"
addresses seen by Web servers may actually be addresses
of proxies. GeoTrack can at best determine the location
of the proxy. The error distance between the proxy and
the end-host may be quite large and this can directly af-
fect our results. The client dataset also reports multiple
locations for a single IP address indicating either that
the address corresponds to a proxy or that the same IP
address is assigned (at di�erent times) to two clients at
di�erent locations. These considerations impose funda-
mental limits on mapping the location of a client using
a traceroute-based technique. The trends look similar
for both Stanford and St.Louis. The fact that 30% of
the clients have an error less than 200 kms, even for the
FooTV dataset, is encouraging.

4.3 Discussion

Any traceroute-based approach has some fundamental
limitations. Many commercial products have tried to get
around these limitations by making use of databases such
as whois. However, as we noted earlier, the whois database
is not a good tool for locating clients. For example, Visu-
alRoute reports all AOL clients with IP addresses in the
block 205.188.128.0/17 as being located at Sterling, VA
(near AOL's headquarters). This anomaly arises from us-
ing whois records for determining location.

In our tool we tried to get eliminate this problem by
performing traceroutes from multiple locations. There are
still a lot of clients whose IP routes go through a common
proxy no matter where you traceroute from. In such cases,
one can determine only the location of the proxy and not
the actual location of the client.

We have developed a variant of GeoTrack called
GeoTrack-M which improves the average error distance
of GeoTrack. GeoTrack-M runs GeoTrack from multiple
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sources and determines the last recognizable router from
multiple sources. GeoTrack-M reports the majority of the
locations reported from di�erent sources. Experimental
results indicate that GeoTrack-M performs much better
than 7 of the 14 probe locations and is slightly inferior in
performance to the best probe point(St. Louis).

5 GeoPing: A Delay Based Loca-

tion Tracker

GeoPing is a tool that we have developed to determine
the geographic location of an IP address by exploiting
the relationship between network delay and geographic
distance. The GeoPing tool measures the delay to a host
from multiple sources at known locations and attempts to
correlate the delay measurements to triangulate the coor-
dinates of the host. GeoPing uses GeoTrack as a tool for
determining the location of intermediate routers and de-
termining a model that captures the relationship between
network delay and geographic distance.

We have devised two very di�erent statistical methods
for developing a delay-based host location tool. We have
named our two methodologies as NNDS and PDF-based.
NNDS stands for Nearest Neighbors in Delay Space and
borrows ideas from the NNSS approach detailed in [1].
The PDF-based approach computes PDFs (probability
density function) for each source (i.e., probe location) that
establish a relationship between the network delay to the
geographic distance from that source. Using these PDFs,
it attempts to �nd the the distance estimates from each
sources and a composite location estimate. Before we de-
scribe the two methods, we present some measurements
that motivate using delay measurements for determining
the geographic location of an Internet host.

5.1 Correlation between Network Delay
and Geographic Distance

This section presents some measurements that indicate
the presence of a relationship between network delay and
geographic distance. Using these measurements we would
like to answer two speci�c questions.

1. Given the network delay of a host from a source, is
there a model that can predict the distance of the
host from that source?

2. If there is a relationship between network delay and
geographic distance as measured from a given source,
then is that relationship, a property of that source
alone or is it a property of the geographic location of
the source?

5.1.1 Experimental Setting

We use the UnivHosts dataset for performing our mea-
surements. We perform traceroutes and ping measure-
ments from the 14 sources in Figure 1 to all the 265 uni-
versity servers in UnivHosts. We traceroute and �nd the
path from a given source to the host and determine the
(round-trip) delay to all intermediate routers using ping
measurements. From multiple delay samples, we com-
pute the minimum delay to each intermediate router in
the path and the minimum delay to the destination. We
use GeoTrack to determine the physical locations of in-
termediate routers and costruct a large dataset of (mini-
mum delay, geographic distance) pairs for all intermediate
routers in the path. We divide the delay range into bins
of width 10 ms and determine the probability distribution
(PDF) of the geographic distance for each delay bin. This
probability distribution of distance for speci�c delay bins
is used to study the correlation between network delay
and geographic distance.

5.1.2 Results
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Figure 4: Cumulative Distribution of geographic distance
for multiple delay ranges based on data gathered at the
Seattle, WA probe location.

Figure 4 presents the cumulative distribution of the ge-
ographic distance from Seattle,WA as a function of the
delay. We have split the delay measurements into non-
overlapping delay bins of 10 ms width and we compute
the CDF for every delay bin. Figure 4 presents the CDF
for 5 delay bins. It is evident from the graph that for
each delay bin, there are distinct peaks in the probability
distribution for speci�c distance ranges. For example, the
distinct peak around 1300 kms for the 25-35 ms delay bin
is mainly contributed by locations in the Bay Area(Palo
Alto, San Francisco). The other noticeable trend is that
as the delay increases from 0 to 80 ms, the peaks of the
probability distributions shift to the right until we reach
the east-west coast distance limit of the US.
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Figure 5: Comparison of CDFs for adjacent geographic
locations

Figure 5 compares the CDFs of adjacent geographic
locations. We compare the 35-45 ms delay bins for Stan-
ford and Berkeley and the 75-85 ms delay bins of Duke
and UNC. Berkeley and Stanford are 50 miles apart, and
Duke and UNC are 8 miles apart. Figure 5 shows that
the PDFs of adjacent locations are de�nitely correlated.
The peaks for Berkeley and Stanford occur at the same
distance range of 2200-2300 kms for the 35-45 ms delay
range. The PDFs of Duke and UNC have peaks around
3500-3700 kms for the 75-85 ms delay range. We exam-
ined the other delay ranges for these two sets of locations
and there is a reasonable match in the peaks of the corre-
sponding PDFs. This indeed shows that the peaks associ-
ated with CDFs for speci�c delay ranges are a function of
the geographic location of the source (i.e., probe location)
and not the speci�c source alone.

5.2 PDF-based Delay Triangulation

In order to exploit the relationships between network de-
lay and geographic distance, we propose a PDF-based de-
lay triangulation approach. The basic idea used in PDF-
based methods is to compute an error function over the
entire location space and �nd the coordinates where the
error function is minimized. Every location is associated
with an error measure which gives an indication of how
far it is from the actual location of the host. In our ap-
proach, we minimize the error function across a list of
known cities, which are geographically distributed, and
report the city with the minimum value of the error func-
tion as the location of the host.

In this section, we explore several error functions based
on the probability distribution of geographic distance as a
function of the network delay from each source. We evalu-
ate the performance of four di�erent error function based
approaches using the UnivHosts dataset. Before explain-
ing these approaches, we briey describe our terminology.
S denotes the location of a probe source, H refers to the
host whose location needs to be determined, CT refers to

a collection of cities within the US, L denotes an element
drawn from the city list CT , d(S;L) is the distance be-
tween source S and the location L and rtt(S;H) is the
round trip time of the host H from source S.

5.2.1 Weighted Least Mean Squares(LMSQ)

In weighted least mean squares, we compute the error
function at a particular location L for a given source, S,
as follows:

1. Given rtt(S;H), we �nd the top K(= 3 by default)
peaks of the probability distribution of the distance
for a small delay range around rtt(S;H). Note that
all our delay measurements are RTT measurements
and not one way delay.

2. For each peak P among theK peaks, we compute the
error to be err(P; S; L) = (d(P )�d(S;L))2=prob(P ),
where d(P ) and prob(P ) refer to the distance value
of the peak P and its probability density in the PDF.

3. Among theK error values, we compute the minimum
value of error to be the error measure of the location
with respect to source S. Therefore error(S;L) =
minP (err(P; S; L)).

4. The error measure with respect to all sources for a
particular location L is the sum total of all error
from di�erent sources. Mathematically, error(L) =P
S error(S;L).

The LMSQ algorithm reports the location L with the
least value of error(L). The reasoning behind choosing
the top K peaks is to take into consideration the presence
of multiple disjoint peaks in the probability distribution
function and the prob(P ) term was used to weigh the error
inversely to the probability distribution around the peak.

5.2.2 Probability Density Estimation(PROB)

In the Probability based method, we compute a joint
probability distribution for every location based on the
delay information and maximize the joint probability dis-
tribution. The steps in the computation of the joint prob-
ability for a location L are:

1. We assume a distance window of Æ(= 50miles)
around a given distance value.

2. Given the distance d(S;L) for a location L and source
S we de�ne the probability p(S;L) to be the area
under the probability density curve within a distance
window of Æ around d(S;L).

3. We compute the joint probability to be the prod-
uct of the individual probabilities. Therefore p(L) =
�S(p(S;L)).
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We compute the location L with the maximum value of
p(L) and report it as the location of the host H .

5.2.3 Composite Statistical Approaches

In the previous sections, we described two statistical
mechanisms LMSQ and PROB which had completely dif-
ferent avors for removing the noise in the system. Is
it possible to combine di�erent statistical approaches to
improve the accuracy in the location estimation? We
propose two composite statistical approaches LMPR and
PRLM which combine the two approaches to determine
the location of the host. The basic idea of composite
schedulers is to use one statistical method to prune the
solution space and the other for optimizing in the pruned
space. In LMPR, the LMSQ method is used to prune
the solution space and PROB is used to optimize on the
pruned space. In PRLM, PROB is used as the pruning
tool and LMSQ as the optimization tool.

The steps used in LMSQ are:

1. Compute minLMSQ = minimumL(errorLMSQ(L)).

2. Let X be the set of all locations L such that
errorLMSQ(L) � THRESHOLD�minLMSQ.

3. Compute the location L in X with the maximum
value of p(L) as de�ned in the PROB method.

In a similar fashion, one can de�ne the steps of the
PRLM algorithm.

5.2.4 Experimental Results

We used traceroute and ping measurements to multiple
locations to determine the probability distribution func-
tion for each source. To test the four PDF-based statis-
tical approaches (LMSQ, PROB, LMPR, and PRLM) we
used the UnivHosts dataset. We measure the delay to the
endhost from each of the 14 sources and apply the 4 sta-
tistical approaches to determine the location of the host.
We compute the error distance for each of the hosts and
plot the CDFs of error distance for LMSQ, LMPR, PROB
and PRLM.

Our results, as shown in Figure 6, indicate that PROB
is a better statistical method than LMSQ. The perfor-
mance of PROB and PRLM are very similar and these two
techniques perform much better than LMPR or LMSQ.
Least Mean Squares(LMSQ) is a widely used statisti-
cal tool and in this particular problem, LMSQ does not
seem to work well. PROB performs much better and
reports a location within 500 kms for 50% of the loca-
tions. The 75th percentile occurs around 1100 kms for
the PROB method. By using LMSQ as the pruning
method and PROB as the optimization tool, we improve
the performance over LMSQ. However, using PROB as a
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Figure 6: Comparison of CDFs for LMSQ, PROB, LMPR
and PRLM

pruning tool improves the performance signi�cantly over
LMSQ.(Note that the axis of the graphs are in log scale)

5.3 Nearest Neighbors in Delay
Space(NNDS)

We ask the question: Is there is a nice way of nullifying
the noise in the measurements to improve the accuracy
in determining the location of a host? We explore an en-
tirely di�erent approach in which we cluster points based
on their locality in the delay space. We consider a list
of known hosts and their locations and determine their
delays from multiple known sources. We characterize the
geographic location of a host using an N-dimensional de-
lay vector, where each coordinate is the minimum network
delay to that host from a particular source. Mathemati-
cally, every data point X can be characterized by a delay
vector D(X) = (d1; : : : ; dN ) where di is the minimum de-
lay of X from source i and this delay vector can be labeled
with location L, the geographic location of X . Given the
delay vector of D(U) of an unknown host U we deter-
mine the nearest neighbor Y in the N�dimensional delay
space (using the Eucledian measure of \distance" in delay
space) and report the location of Y as the location of U .
This approach is similar to the Nearest Neighbor in Signal
Space (NNSS) algorithm in RADAR [1] which operated
on vectors of signal strength rather than delay.

So why does this method reduce the noise in the sys-
tem? From every source, we measure the minimum delay
to every host as the representative delay sample. If a par-
ticular source reports highly noisy data for a few hosts
then many hosts in that geographic location may experi-
ence similar noise levels. Since NNDS computes the near-
est neighbors in the delay space, the noise of neighboring
nodes nullify each other out in the Euclidean distance
metric. This error neutralization however does not hap-
pen for the LMSQ method. This noise is however par-
tially detected by the PROB method, since the presence
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of many hosts with similar noise levels in a particular geo-
graphic location (within a distance window of Æ) increases
the probability p(S;L) for that particular source S and lo-
cation L.

5.3.1 Experimental Results

We performed two di�erent experiments to study the error
distance characteristics. We use the UnivHosts dataset as
the sample data set and the test data set in our exper-
iments. In other words, for determining the location of
one university server we use the data set of all other uni-
versities (excluding the one being located) as the sample
dataset.
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Figure 7: Mean Error Distance vs Number of Probe Points
(characteristics at di�erent percentiles in CDF plots)

Figure 7 shows several percentile levels of the mean er-
ror distance as a function of the number of probe points.
For example, the 75th percentile curve corresponds to the
distance at which the CDF plot of error distance crosses
the 0:75 probability mark. For each percentile level and
number of probes (say n), we compute the mean error
distance to be the average of error distances correspond-
ing to several geographically distributed placements of n
probes locations (chosen from the set of 14 possible lo-
cations). For example, for 2 probes, we average the error
distance over di�erent placements of 2 probes in geograph-
ically dispersed locations among the 14 possible locations.
From Figure 7, we infer that the error distance initially
decreases sharply as the number of probes increases, then
stabilizes and reaches an optimal value between 7 and 9
probe locations, and �nally increases slightly for higher
values. This suggests that having 7 to 9 probes is optimal
for the NNDS algorithm.

5.4 Discussion

It is interesting to note that there is indeed signi�cant cor-
relation between network delay and geographic distance.

This relationship is pronounced for small values of delay
and the predictability of distance, as a function of delay,
decreases as delay increases. We have presented several
ways of exploiting the correlation between the two to de-
termine the location of an unknown host. However, it
is worth noting that GeoPing does not perform as well
as GeoTrack. The best error distribution of GeoPing(9
probes NNDS) performs slightly better than the worst-
case error distribution of GeoTrack(JHU) for the Uni-
vHosts data set.

We have investigated various probe placement strate-
gies for the NNDS approach. We studied the e�ects of
probe placement on the error distribution. Our investi-
gations indicate that a geographically well distributed set
of probes give better error charecteristics than clustered
probe placements. However, the placement of probes has
a smaller impact on performance than the number of
probes.

In our evaluation of GeoPing we have only considered
hosts in the UnivHosts data set. These are typically well-
connected hosts on university campuses. The correlation
between delay and distance may break down when we
consider hosts with a \last-mile" link with a large delay
(for example, a dialup link or a satellite link). In the case
of dialup link, we could use GeoPing to determine the
location of the last router along the path to the target
host. This location may serve as a good approximation
for the location of the target host since users tend to dial
in to modem banks in their local area.

6 The GeoCluster Technique

The GeoCluster technique learns about IP-to-location
mapping from data sources such as the ones mentioned
in Section 3.3. However, as noted before such information
tends to be partial in coverage (since it includes location
information for only a relatively small subset of the IP
address space) and not entirely accurate. These problems
limit the utility of the IP-to-location mapping data.

GeoCluster seeks to address both problems by cluster-
ing together IP addresses corresponding to hosts in the
same geographic location1, i.e., addresses that form a geo-
graphic cluster. Clustering enables us to expand the cover-
age of the partial IP-to-location mapping information. As
a simple example, suppose we know that 128.127.126.0/82

forms a geographic cluster. Furthermore assume that the
partial mapping information tells us that the location cor-
responding to 10 di�erent IP addresses in this cluster is
Foo City. Then we can reasonably deduce that the re-
maining 246 IP addresses in this cluster (if they are in-

1The granularity of the location depends on the application
context.

2The notation a.b.c.d/m denotes an address slice with a pre�x
of length m bits speci�ed.
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deed in use) are also likely to correspond to hosts in (or
near) Foo City.

Identifying geographic clusters is a challenging problem.
Our GeoCluster technique approaches this problem in a
novel way by combining partial IP-to-location mapping
information with network routing information. We build
on the work presented in [10] on identifying topological
clusters. Address allocation and routing in the Internet
is hierarchical. Routing information is aggregated across
hosts that are under a single administrative domain (also
known as an autonomous system (AS)). For example, the
routes for hosts on a university campus would typically be
advertised to the rest of the network as a single aggregate,
say the address pre�x 128.127.0.0/16, rather than 65536
individual IP addresses. Thus knowledge of the address
pre�xes (APs) used by the routing protocol enables us
to identify topological clusters as observed in [10]). We
surmise that APs also constitute geographic clusters. We
elaborate on this below.

We derive information on APs from the border gate-
way protocol (BGP) used for inter-domain (i.e., inter-AS)
routing in the Internet. Each entry in the BGP table at
a router speci�es a destination AP and the AS-level path
leading to it. For our purposes, we are only interested
in the AP information, so we construct a list of unique
APs (over 100000 APs, as mentioned in Section 3.3). The
number of APs is an order of magnitude larger than the
number of ASs. This is because an AS, such as an ISP,
may advertise more speci�c routes (say for certain cus-
tomers) due to policy and/or performance considerations
(e.g., for load balancing).

An AS (and its associated AP(s)) often corresponds to
a geographical cluster such as a university campus or a
company oÆce. Even when the AS is an ISP with large
geographic coverage, the associated APs that are adver-
tised via BGP may be more speci�c (say corresponding
to individual customers), as explained above. In both
these cases, GeoCluster is in a good position able to iden-
tify geographic clusters from AP information. However,
large ISPs (e.g., AT&T, Sprint, UUNet, etc.) often ad-
vertise only aggregate APs for reasons of scalability. In
such cases, a single AP may span a large geographical
area. This problem would be alleviated if we had AP in-
formation not only from inter-domain BGP (also known
as External BGP (E-BGP)) but also from intra-domain
intra-domain BGP (Internal BGP (I-BGP)). I-BGP in-
formation would provide a window into how an AP is sub-
divided within a large ISP. However, I-BGP information
is not made available to ISPs, so this was not a feasible
option for us.

In summary, our baseline GeoCluster algorithm discov-
ers APs only from E-BGP data and treats these APs as
geographic clusters. We term this variant of GeoClus-
ter BGPonly. As explained above, BGPonly has short-
comings, for instance when ISPs only advertise large ag-

gregates. We now present a sub-clustering algorithm de-
signed to address this problem. We term this variant of
GeoCluster BGP+subclustering.

6.1 Sub-clustering Algorithm

The BGP+subclustering variant of GeoCluster depends
only on inter-domain BGP (i.e., E-BGP) data just like
BGPonly. But the novel idea is to use the (partial) IP-to-
location mapping information available to subdivide APs
that have a large geographic spread. For each original AP
obtained from E-BGP, we use the IP-to-location mapping
information to determine whether their is \signi�cant"
consensus on the geographic location of the AP. If there
is, then we declare the AP to be a geographic cluster. If
not, we subdivide the AP into two halves (e.g., the AP
152.153.0.0/16 would be subdivided into 152.153.0.0/17
and 152.153.128.0/17) and repeat the test on each half.
We stop when the subdivision contains too few IP-to-
location mapping data points for a reliable determination
of geographic clustering to be made. In the end, we obtain
a mapping from APs (both original and subdivided ones)
to location. Given an IP address, we �rst �nd the match-
ing AP using longest pre�x match and then report the
corresponding location as the location of the IP address.

Here is pseudocode for this sub-clustering algorithm.
Let IPLoclist be the list of IP-to-location mapping data
points sorted by IP address, BGPAPlist be the list of
APs obtained from E-BGP information, IPLocAPlist be
the sorted list obtained by augmenting the entries in
IPLoclistwith the APs corresponding to the longest pre-
�x match, newAPLoclist be the new list mapping APs
to location obtained by (possibly) subdividing the origi-
nal APs, and cthresh be the minimum threshold on the
number of IP-to-location mapping data points within a
subdivision.

/* initialization */

IPLoclist = sorted IP-to-location mapping

BGPAPlist = APs derived from E-BGP info

/* determine matching APs */

foreach ((IP,location) in IPLoclist) f
AP = LongestPrefixMatch(IP,BGPAPlist)

Add (IP,location,AP) to IPLocAPlist

g
/* subdivide APs using IPLocAPlist */

sameAPlist = EMPTY

curAP = AP in first entry of IPLocAPlist

foreach ((IP,location,AP) in IPLocAPlist) f
if (AP in (IP,location,AP) == curAP) f
/* contiguous list with same AP */

Add (IP,location,AP) to sameAPlist

g else f
/* Subdivide curAP as appropriate */

if (jsameAPlistj� cthresh) f
if (sameAPlist is geographically
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clustered) f
avgLocation = average location of

cluster

Add (curAP,avgLocation) to newAPLoclist

g else f
Divide curAP into two equal halves

Divide sameAPlist accordingly

Recursively test whether either/both of

subdivisions form a geographic cluster

g
g
/* reset/reinitialize sameAPlist */

sameAPlist = NULL

Add (IP,location,AP) to sameAPlist

g
g
newAPLoclist is the new list used for

IP-to-location mapping

The e�ectiveness of this algorithm depends on the rich-
ness of the (partial) IP-to-location mapping data avail-
able. If insuÆcient data is available for certain APs, these
will not be included in newAPLoclist. So GeoCluster will
be unable to determine the location of IP addresses that
match those APs.

Considering aggregates of IP-to-location data points
also o�ers the advantage that isolated errors in the in-
dividual data points can be neutralized. For instance,
suppose that 90% of the IP-to-location data points corre-
sponding to an AP agree on the location being California
while the remaining 10% are scattered elsewhere. We can
make the reasonable assumption that the entire AP is
located in California and attribute the discrepancies to
errors in the IP-to-location mapping data.

We have not speci�ed how it is determined whether a
set of locations is clusterered geographically or how the
\average" location of a cluster is computed. The answers
to both of these questions are context-dependent | de-
pendent on the granularity of the location information
contained in the partial IP-to-location mapping and on
the needs of the application. In case the location infor-
mation is relatively �ne-grained (e.g., zip codes), the lo-
cation of the individual points is quanti�able (say using
latitude and longitude). So we could compute an com-
posite location using averaging. We could also compute a
dispersion metric that quanti�es the spread. In case loca-
tion information is coarse-grained (e.g., states), we could
test to see if more than a certain fraction of the points
agree on location. We describe the speci�c approach we
use in our experimental analysis in Section 6.3.

6.2 Impact of Proxies and Firewalls

Many Internet clients lie behind proxies and/or �rewalls
that separate the corporate or ISP network from the rest

of the Internet. In such a setting, often the proxy or
�rewall connects to external Internet hosts (such as Web
servers) on behalf of the client hosts. The IP address of
the client hosts remains hidden from the external network.
As such there is no direct way to map from IP address to
location for such clients. (After all we are interested in
the location of the client, not that of the proxy or the
�rewall.)

Our sub-clustering algorithm deals with this issue ele-
gantly. If the set of clients that connect via a group of
proxies (having IP addresses that are contained within an
address pre�x AP ) is clustered geographically (say at lo-
cation L), then given a suÆcient number of IP-to-location
data points, the sub-clustering algorithm will (correctly)
determine an association between the address pre�x AP
and the location L. This is what happens say in the case
of clients on a university or coporate campus or clients of
an ISP that connect via a local (or regional) proxy. How-
ever, there are instances (such as with the ISP America
Online (AOL)) where clients in geographically diverse lo-
cations share a common pool of proxies. (With AOL we
have seen clients thousands of kilometers apart connect
via a proxy with the same IP address!) In such a case,
our sub-clustering algorithm will not be able to determine
any geographic clusters, so it will not try to map the IP
address to a client location. We believe this is an im-
portant property of the sub-clustering algorithm because
for some applications providing (highly) inaccurate loca-
tion information may be much worse than not providing
any information at all. For instance, displaying a generic
advertisement on a New York user's screen would proba-
bly be better than mistakenly displaying an advertisement
speci�c to California.

6.3 Experimental Results

We now analyze the performance of GeoCluster in several
ways using a variety of data sets. We compare the perfor-
mance of GeoCluster with that of GeoTrack and GeoPing.
We analyze two variants of GeoCluster: (1) only using AP
information derived from BGP tables (BGPonly), and (2)
post-processing the BGP tables using the sub-clustering
algorithm discussed in Section 6.1 (BGP+subclustering).
We compare both variants against a simplistic approach
that ignores BGP infomation and assumes that all APs
to have a 24-bit pre�x length (/24-clusters).

6.3.1 Locating hosts in UnivHosts

We �rst analyze the ability of GeoCluster (the BGPonly
variant) in determing the location of the 265 hosts in the
UnivHosts list (Section 3.2). We use IP-to-location map-
ping information contained in the FooTV data set. As ex-
plained in Sectionsubsec-geocluster-data, we convert each
zip code contained in the FooTV data to the correspond-
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ing (approximate) latitude and longitude. Then using
AP information derived from BGP data, we cluster the
(IP,latitude,longitude) data points based on the AP that
the IP address lies in. For each cluster we compute a com-
posite location (as a (latitude,longitude) pair) by linearly
averaging the latitudes and longitudes of the constituent
points. Thus we �nally obtain a mapping between APs
and the corresponding (latitude,longitude) pairs. (Only
APs that have at least data point indicating location are
included in this mapping.) Given an IP address, we �nd
the matching AP (using longest pre�x match) and output
the corresponding (latitude,longitude) pair as the loca-
tion.

We quantify the accuracy of the location estimated by
GeoCluster (and the other techniques) using the error dis-
tance.
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Figure 8: CDF of the error distance computed over the
UnivHosts data set for GeoTrack, GeoPing, and GeoClus-
ter.

Figure 8 shows the CDF of error distance for GeoClus-
ter computed over the 265 university hosts. We also show
the best case CDFs of GeoTrack (initiated from the St.
Louis probe machine) and GeoPing (using 9 probe ma-
chines) for comparison. GeoCluster is able to deduce the
location of only 233 out of the 265 (i.e., about 88%) uni-
versity hosts. This is because the IP-to-location mapping
data derived from FooTV is partial in coverage, and de-
spite the clustering performed using BGP data, we still
have no location information for about 12% of the hosts.
However, for the vast majority of hosts for which it is
able to determine location, GeoCluster signi�cantly out-
performs (the best cases of) both GeoTrack and GeoP-
ing. For instance, the median and 80th percentile marks
for GeoCluster are only 28 km and 226 km, respectively.
The corresponding numbers are 108 km and 384 km for
GeoTrack, and 382 km and 1201 km for GeoPing.

GeoCluster performs well on the UnivHosts data set be-
cause these hosts are often clustered together geograph-
ically on university campuses. Moreover, many (but not
all) universities have distinct address allocations (e.g.,

150.131.0.0/16 for the University of Montana) that are
advertised via BGP as distinct address pre�xes (APs).
So GeoCluster is able to identify the universities as geo-
graphic clusters with relative ease.

6.3.2 Locating hosts in FooHost

We now analyze the performance of GeoCluster using a
much larger test data set, namely the FooHost data set.
This data set contains 181246 unique IP addresses and
their corresponding zip codes. (As noted in Section 3.3,
the zip code information may not be entirely accurate.
Hence, unlike with the universities data set, we are not
entirely certain of the true locations of the hosts.) As
in our analysis using the university hosts, we use the BG-
Ponly variant of GeoCluster with the FooTV and the BGP
data sets used to prime the GeoCluster algorithm.

For each IP address in FooHost, we estimate its location
and then compute the error distance. The error distance,
with the IP addresses sorted in increasing order of error
distance, is shown in Figure 9. We observe that GeoClus-
ter is only able to estimate location for about 77% of the
181246 hosts. The 25th, 50th (median), and 75th per-
centile marks of the error distance are 84 km, 685 km,
and 3056 km respectively. In other words, GeoCluster
performs much worse for the FooHost data set than for
the UnivHosts data set.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140

IP address sequence number (1000s)

D
is

ta
n

ce
(k

ilo
m

et
er

s)

Error Distance Dispersion

Figure 9: The error distance and the dispersion for hosts
in FooHost.

The main reason for the worse performance is that the
FooHost data set is much more diverse than the UnivHosts
data set. Unlike UnivHosts, many of the IP addresses in
FooHost fall within the APs corresponding to large and
geographically-dispersed ISPs (e.g., 12.0.0.0/8 belonging
to AT&TWorldNet) or belong to proxies or �rewalls (e.g.,
AOL clients). Hence GeoCluster is only able to determine
location accurately for a smaller fraction of the hosts.

Given the wide range of error distance for di�erent
hosts, it would be useful to be able to tell when Geo-
Cluster's estimate is accurate and when it is not. For this
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purpose, we compute a metric, which we call dispersion,
for each AP as follows. As oulined in Section 6.3.1, for
each AP we consider all IP addresses from the training
set (FooTV in the present instance) that are contained
within that AP. We compute a composite location for the
AP as a whole using linear averaging. We then compute
the dispersion metric for this AP as the mean distance of
the training points from the composite location of the AP.
Intuitively, dispersion quanti�es the extent of geographic
spread in the AP.

We would expect that the larger the dispersion is, the
less accurate GeoCluster's estimate of location would be.
This is borne out by Figure 9 which depicts the (smoothed
version of) dispersion curve for the FooHost data set. In
fact, the dispersion curve matches the error distance curve
quite well (except for hosts at the extreme right). This
makes intuitive sense since the error in location estima-
tion results from the geographic spread of APs, and it is
exactly this spread that dispersion quanti�es.

At the extreme right of the graph, we see that error
distance shoots up while the dispersion drops sharply. To
better understand this puzzling phenomenon, we took a
closer look at the corresponding (IP,zip) data points in
FooHost. Based on this examination, we have come to
the conclusion that the apparent discrepancy is caused by
errors in the FooHost data set. As discussed earlier, the
location information in FooHost is gathered from user reg-
istration information contained in cookies. An IP address
recorded in this log may not always correspond to a host in
the same location as registered by the user. For example,
FooHost contains the IP address 140.247.147.42 (which
maps to the DNS name room147-42.student.harvard.edu),
which presumably corresponds to a host at Harvard Uni-
versity in the northeastern corner of the U.S. However,
the corresponding location conatined in the FooHost data
is Portland, Oregon, 4000 km away in the northwestern
corner of the U.S.! Thus we believe the sharp spike in er-
ror distance is misleading; the error distance may in fact
be very small.

The errors in our test data notwithstanding, we be-
lieve that GeoCluster would not perform as well for a
diverse set of hosts as for the university hosts. Still the
error distance is relatively small (within a couple of hun-
dred kilometers) for a substantial fraction (around 40%)
of the hosts. And, quite importantly, GeoCluster is self-
calibrating in the sense that it is able to tell when a loca-
tion estimate is likely to be accurate and when it is not.

6.3.3 Importance of the sub-clustering algorithm

Thus far we have considered the BGPonly variant
of GeoCluster that only uses AP information derived
directly from BGP data. Now we now turn to
the BGP+subclustering variant that employs the sub-
clustering algorithm (Section 6.1) to construct an AP-

to-location mapping. This algorithm makes use of both
BGP data and partial IP-to-location mapping informa-
tion. We are interested in studying what bene�t, if any,
the sub-clustering algorithm provides.

We use the partial IP-to-location mapping contained in
FooMail (Section 3.3) as input to the sub-clustering al-
gorithm. Recall that the location information in FooMail
is at the granularity of states. This raises the question
(discussed in Section 6.1) of deciding when a set of loca-
tions corresponding to an AP is deemed to be \geograph-
ically clustered". We use the following test: an AP is
deemed to correspond to a geographic cluster if it con-
tains at least cthresh (IP,location) data points, at least
fthresh of which (as a fraction) share the same location
(i.e., the same state). In most of the results shown here,
we set cthresh = 20 and fthresh = 0:7 and denote this
as (20; 0:7). We also briey discuss results for the (5,0.6)
setting.

We use FooHost as the test data. Recall that the lo-
cation information in FooHost is at the granularity of zip
codes whereas that in FooMail is at the granularity of
states. This raises the question of how to quantify accu-
racy. We decided to do all of our calculation at the gran-
ularity of the states. We map the zip codes in FooHost
to the corresponding states. We then compute the zip-
center of each state by averaging the coordinates of the
zip codes contained within that state (Section 3.3). The
error distance is then computed as the distance between
the zipcenters of the actual and deduced states. So the
error distance is zero if the state is deduced correctly and
non-zero otherwise.
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Figure 10: CDF of the error distance (computed
at the granularity of states) for the BGPonly and
BGP+subclustering variants of GeoCluster, and for the
/24-clusters method.

Figure 10 shows the CDF of error distance. We
observe that BGP+subclustering signi�cantly outper-
forms BGPonly. In particular, with the (20; 0:7) setting
BGP+subclustering gets the state right (i.e., an error dis-
tance of zero) for 53% of the hosts while BGPonly does so
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for only 36% of the hosts. The reason is that BGPonly is
often stuck with large, geographically-dispersed APs ob-
tained directly from BGP data while the sub-clustering
algorithm is often able to break these down into smaller
and more (geographically) compact APs. It is interesting
to note that even /24-clusters, which completely ignores
BGP data, outperforms BGPonly slightly, although it is
still much worse than BGP+subclustering.

Finally, we see that BGP+subclustering performs
slighly better with the (5; 0:6) setting compared to
(20; 0:7) (the correct state is deduced for 56% of the hosts
compared to 53%). Nevertheless we believe that a (5; 0:6)
setting may be too aggresive in the sense that it may often
misidentify geographic clusters (after all (5; 0:6) requires
just 3 out of 5 data points to agree on location for an
AP to be deemed a geographic cluster). We are presently
investigating this issue further.

6.4 Discussion

In summary, GeoCluster employs a novel algorithm that
combines partial IP-to-location mapping information with
BGP routing information to make an intelligent determi-
nation of a client's location. The algorithm is able to tol-
erate a limited amount of inaccuracy in the IP-to-location
mapping information and remain e�ective in certain situ-
ations where clients connect via proxies or �rewalls.

An interesting question is how one would obtain partial
IP-to-location mapping information in general. There are
several possible ways one might do this.

1. The likely location of a user can be inferred from the
kind of information accessed or queries issued by the
user (as, for example, in the case of FooTV). Since it
only considers such information an aggregated form
(corresponding to clusters), GeoCluster is able to tol-
erate a limited amount of inaccuracy in the inference.

2. Certain Web sites, such as Yahoo [38] and MSN [29],
o�er a mix of generic content (e.g., news) and user-
speci�c content (e.g., email). Partial IP-to-location
mapping information may be derived from accesses
made by (registered) users to the latter content and
then used in conjunction with GeoCluster to infer the
location of (the often much larger number of) users
(registered and unregistered) who access generic con-
tent.

In general, we expect that there will be a relatively
small number of content providers and \location servers"
(akin to advertisement servers such as DoubleClick [21])
that will employ GeoCluster (and the other techniques)
to map IP addresses to geographic locations. The vast
majority of Web sites would simply subscribe to the ser-
vices provided by the location servers and so need not be
concerned with the details of the location mapping tech-
niques.

7 Conclusions

In this paper we have examined the interesting but chal-
lenging problem of determing the geographic location of
Internet hosts. Our motivating example is an Internet
server that determines the locations of its clients and
moulds its behavior accordingly. In general the server
only knows the IP address of the client host, so the chal-
lenge is to map this address to a geographic location.

We have designed and evaluated three distinct tech-
niques to solve this problem: (a) GeoTrack, which ex-
tracts location information from DNS names of hosts and
routers, (b) GeoPing, which determines location using
network delay measurements made from several known
locations, and (c) GeoCluster, which combines partial IP-
to-location mapping information with BGP routing data
to determine location.

While our location determination techniques are
nowhere near wireless systems such as GPS in terms of
accuracy, we believe that our experimental results are en-
couraging. Our techniques work best for well-connected
and geographically clustered hosts, such as those on a uni-
versity campus. The median error distance in such cases
is as low as 28 km, roughly the size of a city. For a more
heterogeneous mix of hosts, the median error distance is
around 600 km, about the size of a large state in the U.S.
Furthermore, the GeoCluster technique gives an indica-
tion of how accurate its location estimate is likely to be.

Our techniques are able to handle to an reasonable ex-
tent the diÆculties posed by proxies and �rewalls in cer-
tain situations (e.g., clients on a geographically compact
corporate campus or clients that connect via local or re-
gional proxies). However, we are unable to determine the
location of client hosts behind centralized proxies such as
those employed by large ISPs such as AOL.

We believe our techniques enable an interesting class of
location-aware services for Internet hosts. Targeted ad-
vertising is one example which can be quite e�ective even
if used for only 30-40% of clients. Such advertising can be
done at the level of a city (e.g., sporting events), state
(e.g., election advertisements), or region (e.g., weather
alerts).

Besides the speci�c techniques that we have developed,
we believe an important contribution of our paper is that
it presents a systematic study of the IP-to-location map-
ping problem and analyzes a wide range of interesting
data sets.

8 Ongoing and Future Work

We are presently working on extending our techniques
to countries outside the U.S. We have already extended
GeoTrack to Canada and 26 countries in Europe. We are
presently enlisting probe locations in Europe to enable us
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to extend GeoPing as well.

We are investigating combinations of the three tech-
niques to improve accuracy. Speci�cally, we working on
a composition of GeoTrack and GeoPing that uses the
network delay from the last recognizable router to the
destination host to estimate the location of the latter.

In the future, we are plan to integrate our host location
techniques with a Web server to provide simple location-
aware services.
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